User-Independent Human Activity Recognition Using a Mobile Phone: Offline Recognition vs. Real-Time on Device Recognition
نویسندگان
چکیده
Real-time human activity recognition on a mobile phone is presented in this article. Unlike in most other studies, not only the data were collected using the accelerometers of a smartphone, but also models were implemeted to the phone and the whole classification process (preprocessing, feature extraction and classification) was done on the device. The system is trained using phone orientation independent features to recognize five everyday activities: walking, running, cycling, driving a car and sitting/standing while the phone is in the pocket of the subject’s trousers. Two classifiers were compared, knn (k nearest neighbours) and QDA (quadratic discriminant analysis). The models for real-time activity recognition were trained offline using a data set collected from eight subjects and these offline results were compared to real-time recognition rates. Real-time recognition on the device was tested by seven subjects, three of which were subjects who had not collected data to train the models. Activity recognition rates on the smartphone were encouracing, in fact, the recognition accuracies obtained are approximately as high as offline recognition rates. The real-time recognition accuracy using QDA was as high as 95.8%, while using knn it was 93.9%.
منابع مشابه
Human Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملPersonalised Online Activity Recognition with Smartphone Accelerometer
Mobile phone based activity recognition uses data obtained from embedded sensors to infer users physical activities. The traditional approach for activity recognition employs machine learning algorithms to learn from collected labelled data and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. This appr...
متن کاملGesture Recognition Using Mobile Phone's Inertial Sensors
The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way...
متن کاملMobeacon: An iBeacon-Assisted Smartphone-Based Real Time Activity Recognition Framework
Human activity recognition using multi-modal sensing technologies to automatically collect and classify daily activities has become an active field of research. Given the proliferation of smart and wearable devices and their greater acceptance in human lives, the need for developing real time lightweight activity recognition algorithms become a viable and urgent avenue. Although variants of onl...
متن کاملA New Ontology-Based Approach for Human Activity Recognition from GPS Data
Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012